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Electronic Data Sources for Kinetic Models of Cell Signaling
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Functional understanding of signaling pathways requires detailed information about
the constituent molecules and their interactions. Simulations of signaling pathways
therefore build upon a great deal of data from various sources. We first survey elec-
tronic data resources for cell signaling modeling and then based on the type of data
representation the data sources are broadly classified into five groups. None of the
data sources surveyed provide all required data in a ready-to-be-modeled fashion. We
then put forward a “wish list” for the desired attributes for an ideal modeling centric
database. Finally, we close with perspectives on how electronic data sources for cell
signaling modeling have developed. We suggest that future directions in such data
sources are largely model-driven and are hinged on interoperability of data sources.
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Abbreviations: AfCS, Alliance for Cellular Signaling; BBID, Biological Biochemical Image Database; BRENDA,
Braunschweig Enzyme Database—the comprehensive enzyme information system; CellML, Cell Markup Lan-
guage; DOQCS, Database of Quantitative Cellular Signaling; E-Cell, Electronic Cell; eMIM, Electronic Molecular
Interaction Map; GIF, Graphics Interchange Format; iHOP, Information Hyperlinked over Proteins; JPEG, Joint
Photographic Experts Group; JWS, Java Web Simulation; KDBI, Kinetic Data of Biomolecular Interactions;
KEGG, Kyoto Encyclopedia of Genes and Genomes; MATLAB, Matrix Laboratory; ODE, Ordinary Differential
Equation; PNG, Portable Network Graphics; ProTherm, Thermodynamic Database for Proteins and Mutants;
SBML, Systems Biology Markup Language; STKE, Signal Transduction Knowledge Environment; SVG, Scalable
Vector Graphics; TAIR, The Arabidopsis Information Resource; UML, Unified Modeling Language; URL, Uniform
Resource Locator; XML, eXtensible Markup Language.

1. Introduction
Cellular information flow is largely mediated through

a complex network of biochemical signaling events. These
events have recently become the focus of much work in
the broad field of systems biology. To a first approxima-
tion such events can be represented as biochemical reac-
tion steps, which are amenable to relatively standard
techniques for kinetic simulations. Kinetic modeling of
biological signaling systems involves the steps of defining
the system topology, obtaining kinetic parameters, and
finally deciding on the model formalism. Each step
requires a different type of information. In the first sec-
tion of this review we look at the different types of data
sources available for kinetic modeling and how helpful
are these sources at different stages of modeling. The
latter section identifies some important attributes of a
model-centric database.

2. Why do we need databases?
In recent years Biology has begun to come to terms

with the large amount of information being generated
and documented through modern experimental tech-
niques. This problem is especially acute in fields like
systems biology where the chemistry among signaling
molecules leads to combinatorial numbers of possible
interactions. The problem of information overload often
impels researchers to develop an excessively narrow

critical interactions. A closely related problem for the
systems modeler is the lack of specific, easily accessible
information on quantitative biochemical parameters
such as Km, Vmax, Kf, Kb, or local subcellular signaling
volumes. Thus, it becomes important to use database
management systems for highly reliable data retrieval
and efficient information management (1–3). Use of data-
bases also requires addressing the problems of synonymy
and polysemy inherent to the signaling field.

Data requirements, of course, depend on research
needs. This has been the motivation for setting up field-
specific databases that present relevant information to
practitioners of a specific field. For example, biologists
refer to the National Institute of Health’s genetic
sequence database, GenBank® (http://www.ncbi.nlm.nih.
gov/Genbank/index.html) for an annotated collection of
all publicly available DNA sequences. Much more
specialized data is available through efforts such as The
Arabidopsis Information Resource (http://www.arabidopsis.
org/) provides a comprehensive resource for the scientific
community working with Arabidopsis thaliana. TAIR is a
portal that integrates different types of information and
tries to be a database resource for the Arabidopsis user
community (4).

Studies (5) have shown that scientists generally obtain
information from three major sources: their own experi-
ments, personal communication with other scientists,
and textual material (print or electronic). De Groote et al.
(6) have shown that users often prefer online resources to
print, with convenience and full-text availability being
key factors for selecting online resources. De Groote’s
study has suggested that databases without links to full
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text and online journal collections without links from bib-
liographic databases tend to have lower use. This shift
towards online data access also emphasizes the increas-
ingly important role of electronic resources for biochemi-
cal modeling.

3. Databases as kinetic modeling resources for cell
signaling
Databases like KEGG (http://www.genome.jp/kegg/

pathway.html) (7) and BioCyc (http://www.biocyc.org/) (8)
are valuable comprehensive resources for metabolic
network modeling. Cellular signaling currently lacks
equally extensive and well-curated databases, though
information gateways like AfCS (http://www.signaling-
gateway.org/) (9) are efforts towards this goal. Most cell
signaling databases deal with a specific subset of infor-
mation in the field.

Model building broadly involves three closely inter-
linked steps: defining the model components and interac-
tions, obtaining parameters, and deciding on the level of
detail to use for the model. The source of information at
each step in model building is provided by various kinds
of data resources. Based on the general types of informa-
tion presented in different databases these data sources
fulfill different roles in biological systems modeling and
can broadly be classified as detailed in the sections below.

Representative examples of freely available databases
classified according to this grouping are available at http:
//www.ncbs.res.in/~bhalla/modeling_resources/index.html
as an online supplement. URL decay is a problem for
cited online resources (10); the URLs listed in the classi-
fication were checked to be current and functional as of
the time of writing.

3.1. Diagram resources. Databases that are dia-
gram centric, range in their representations of pathway
diagrams from block diagram depictions available in Bio-
Carta (http://www.biocarta.com/genes/index.asp) to more
detailed network depictions like the Kohn interaction
maps (11). The diagrams range from static depictions on
BBID (http://bbid.grc.nia.nih.gov/) (12) to interactive path-
way diagram displays like eMIMs (http://discover.nci.nih.
gov/mim/home.jsp) (13), Science’s STKE: The Connec-
tions Maps Database (http://stke.sciencemag.org/cm/) (14),
and Boehringer Mannheim Biochemical Pathways
Wall Chart (http://www.expasy.org/cgi-bin/search-biochem-
index).

Images are mostly stored in bitmap graphic formats
like GIF, JPEG, or the PNG (15). The disadvantage of
such a representation is that it is a fixed-size representa-
tion and the text within the images cannot be queried. At
least two XML based formats now exist for searchable
diagrammatic representations of signaling pathways. A
low-level diagram graphics specification level utilizes the
SVG specification. SBML incorporates a reaction layout
extension, which provides similar functionality at a
higher level of abstraction. In addition to the ease of size
reduction and enlargement, such formats allows for
searchable text within the images. Resources like STKE
Connections Maps and eMIMs use this format for path-
way representation. It is likely that such searchable for-
mats will become more important in online resources for
biochemical modeling.

3.2. Model depositories. Several useful model col-
lections are accessible through the web. Some are collec-
tions of pre-existing quantitative models maintained by
developers of the model and are specific to a field. For
example, the Millar Group Circadian Rhythm model
collection (http://template.bio.warwick.ac.uk/staff/amillar/
PEBrown/CircadianModelling/NewModels/NewModels.htm)
is devoted to models of the cell cycle. Others are general
collections of models that are based on published mathe-
matical models taken from journals, conference proceed-
ings, and from textbook defined pathways. These reposi-
tories are usually just a plain listing of different models
e.g. CellML model repository (http://www.cellml.org/
examples/repository/) (16, 17), SBML model repository
(http://sbml.org/models/) (18) and do not allow searching
for parameters attached to individual reactions and mol-
ecules. The models are listed individually or are available
in a compressed package. Though model depositories
such as these are important resources of quantitative
information they may be difficult to query for informa-
tion on a specific reaction or molecule. Access to specific
parameters may sometimes involve downloading the
model and simulator and running it to explore model
parameters.

3.3. Specialized databanks. There are now many
specialized electronic resources that contain data useful
for modeling. BRENDA (http://www.brenda.uni-koeln.de)
(19) provides quantitative information on enzymes, in-
cluding parameters such as Km, Vmax, and specific activity.
Kinetics of specific reactions is available on KDBI (http://
xin.cz3.nus.edu.sg/group/kdbi/kdbi.asp) (20). Thermo-
dynamic parameters are provided on ProTherm (http://
gibk26.bse.kyutech.ac.jp/jouhou/protherm/protherm.html)
(21). Information gateways are a distinct category of data
sources for obtaining signaling specific information that
could be used in modeling. Examples include AfCS-
Nature Signaling Gateway and Science’s STKE (http://
stke.sciencemag.org/). These information gateways are
different from specific databases because the information
available here is from different databases and the gate-
way provides for common interface for dissemination of
information.

3.4. Searchable model depositories. Searchable
model depositories combine the features of specialized
databanks with the availability of a working model.
These allow the query for molecules and reactions and
thus the specific quantitative parameters in the model
are made available independent of downloading and run-
ning a model. Many models use a modular design to rep-
resent signaling pathways; databases can facilitate the
reuse of parts of complex models by either making avail-
able the model in parts or by displaying model details in
a modular fashion. DOQCS (http://doqcs.ncbs.res.in/) (22)
is an example of a searchable model depository that
provides search features to obtain biochemical interac-
tions and parameters of reactions, enzymes and mole-
cules comprising working models in the database. The
design of models on DOQCS allows reuse of models both
in parts and as a whole. In addition to being a database of
current models, DOQCS is also a database of record for
previously published models. SigPath (http://icb.med.
cornell.edu/crt/SigPath/index.xml) (23) is an example of
an information management system that similarly allows
J. Biochem.
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search of parameters attached to models held in the
repository.

3.5. Online modeling databases. Only a few data-
bases allow online simulation of their models. Online
simulation of models has the advantage that the user can
explore model behavior without downloading the model
and simulator. JWS Model Database (http://jjj.biochem.
sun.ac.za/database/) (24) and Budding Yeast Cell Cycle
Database (http://leibniz.biol.vt.edu/research/budding_yeast_
model/pp/index.php) are examples of databases that allow
online simulation of their models. It is still not possible
on these databases to query for specific parameters with-
out having to “see” the model though such flexibility
would be useful. A slightly different focus is provided by
the E-Cell (http://www.e-cell.org/) (25) and Virtual Cell
(http://www.nrcam.uchc.edu/vcellR3/login/login.jsp) (26)
projects, which have a collection of models available to
users but are primarily on-line simulation resources.

Overall, it is clear that most current pathway data-
bases have different niche strengths. Most of the data-
bases provide information from only a small domain that
can be used for modeling. No single online pathway data-
base in the public domain has all the features required to
be a single-point entry for signal transduction pathway
modeling. Given the rapid diversification of the field, it is
perhaps valuable to have a thriving ecosystem of differ-
ent database specialties. Since no database fulfills all
these requirements there is a need for database interop-
erability to facilitate modeling of signaling pathways.

4. What would make an ideal resource for modeling
cell signaling?
What would a modeler like from a database? The best

thing would be to have a suitable model already availa-
ble. The next best would be to have ready access to the
kinds of data needed to build the model: interaction
topology, parameters, and detailed literature sources. In
either case, the modeler would need an effective visuali-
zation mechanism to navigate the complexity of the sign-
aling network. There are many existing data resources
that have niche strengths in the areas mentioned above.
A model centric database could allow for seamless inter-
operability with these resources. We consider some of
these attributes below.

4.1. Model reusability. The model centric database
should store models in a manner that facilitates easy
reuse of both complete and part models. A Web-based
simulator plugged in to the database would allow a user
to query and run simulations from any remote location. It
would be possible to run models from different simula-
tion/analysis tools if the simulator uses standard formats
like SBML (18), CellML (16, 17), or UML (27) as an input
or the database is capable of converting general formats
like ODEs or MATLAB (MathWorks, Natick, MA; http://
www.mathworks.com/) into the form that the simulator
uses. An extensible design or data classes in a database
allow addition of new data types from future models.

4.2. Efficient search. The usefulness of a database
depends on the relevance of the results that it provides in
response to a user query. URL based navigation is a fast
way to achieve limited functionality but databases need
to add support for complex queries (28). Form based que-
ries are clearly desirable as they enable rapid execution

of complex queries. A model centric database would need
to handle different flavors of searches.

In order to successfully handle searches for parame-
ters independent of the model, the database would need
to address the problems in biomolecular nomenclature
due to the tendency of modelers to use abbreviations or
generic molecular names. To do this it would be useful for
the database to map model entries to a standard ontology
(29–31) for signaling pathways.

The database could feature search algorithms that
make it possible to extract biological relationships
directly from bibliographic databases like PubMed, full
journal articles or even a user defined collection of
unstructured text (32). Automated text mining has pro-
gressed from recognition of protein names (33, 34) and
protein interactions to identifying cellular location (35,
36) and even identification of kinetic parameters (37).
Resources like iHOP (38) are useful for extracting protein
interaction data from PubMed indexed abstracts through
automated text-mining. The user can then choose to cus-
tom build a protein interaction network on iHOP.

It would be useful to have an interaction data search
on a pathway modeling database to allow for identifica-
tion of putative pathways and molecular interactions
(39–42) from in-house datasets as well as publicly availa-
ble resources. There are various (43, 44) strategies that
are commonly used for interaction prediction from genomic
or proteomic data alone and by a combined search of
expression data and literature (45). Covert et al (46) have
reconstructed, on the basis of information derived from
literature and databases, an integrated genome-scale
computational model of a transcriptional regulatory and
metabolic network in E. coli.

4.3. Pathway visualization. The pathway visuali-
zation tool on the database depicts biological interactions
at different levels of details. Switching of the pathway
depiction from block-diagram representation where the
detailed knowledge of all possible reaction paths is not
required, to detailed reaction-level diagrams that are
totally unambiguous and suitable for simulation allows
easy change of perspectives. At present there is no con-
sensus on the drawing of such schemes. These vary from
BioCarta style cartoon representations, to wiring dia-
grams like the Kohn interaction diagrams that borrow
graphical notations from electronics, to 3-D representa-
tions of networks (47, 48). The challenge for an accurate,
complete, and comprehensible organization of signaling
pathways is non-trivial.

5. Conclusions
Electronic data resources for biochemical modeling

have come a very long way in a short time. The current
survey reveals an exuberant diversity of database types,
representations, and target audiences. There are two
main directions that seem to emerge from the survey. The
first is that there is a strong move to provide for interop-
erability at many levels. These include model description
languages like SBML and CellML, interlinking of data-
bases, ontologies for reaction nomenclature and a few
database portals that combine many resources.

The second direction is the strong model-driven nature
of database efforts. A few databases already have
attached modeling resources, and conversely several
Vol. 137, No. 6, 2005
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modeling efforts and simulation environments have asso-
ciated databases. This is an extremely fruitful direction
in a field where technical advances in experiments and
modeling must drive the data handling capabilities of
databases. For example, it is likely that the emergence of
high-resolution quantitative microscopy methods and
corresponding 3-dimensional simulation techniques will
provide an impetus to new data handling and search
techniques for such data.

Model centric databases bring data from multiple and
independent sources together. This makes it possible to
query the behavior of biological processes at a systems
level. These databases help in organizing of the huge vol-
umes of data into information in a manner tractable to
the human mind.

Web-extras as supplement for the paper: Representative
examples of freely available databases classified according to
the grouping discussed in the paper will be made available at
http://www.ncbs.res.in/~bhalla/modeling_resources/index.html
as an online supplement. We thank Sriram M. Ajay for com-
ments on the manuscript. USB is a Senior Research Fellow of
the Wellcome Trust. We acknowledge support from the Well-
come Trust, NCBS and Biophase Simulations, Inc. to HRGV,
SJV and USB.
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